
Abstract Classes

A company has two kinds of employees – hourly
workers who work 40 hours a week at a certain
wage per hour, and salaried workers who work
for an annual salary. The hourly workers get
paid every week; the salaried workers once a
month -- let’s say every fourth week.

I want to write a system that has a list of the
company’s employees; each week it runs
through the list looking at each employee’s data
and printing a statement about how much that
person should be paid.

How do we arrange the classes to make this
easy?

Answer: Make a parent class Employee , with
subclasses HourlyWorker and SalariedWorker. The
staff list can be an ArrayList<Employee> or even
Employee[]

Our payEveryone method will have a loop like this:

for (Employee x: staffList)

(<cast x into its right type>).pay()

If we give Employee a pay() method that the
two subclasses override, then we don’t have to
cast the list variable into appropriate subclass;
the runtime environment will call the subclass’s
method automatically.

Now, what body do we give the pay() method in
class Employee?

Answer: we DON’T give it a body. This company
has no generic employees, so we should never
construct an element of the employee class. We
make pay() an abstract method of the Employee
class, which makes the class itself abstract.

The declaration of pay() is

public abstract void pay();

If a class is abstract it must be declared so:
public abstract class Employee

You cannot construct an object of an abstract
class.

An abstract class must be extended by
subclasses that override its abstract methods.

A class is abstract (and must be declared as
such) if it has at least one abstract method.

• See example:

• Class Employee, SalariedWorker,
HourlyWorker and StaffExample

Advantages of abstract classes:

1. They provide a common parent class for
similar but distinct classes.

2. They force the subclasses to instantiate
essential methods.

3. They provide a template that can be
instantiated in very different ways for very
different extending classes.

